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Deteriorating soil fertility, low unreliable rainfall and soil moisture stress has resulted to

low crop yields among farmers of sub-Saharan Africa (SSA), necessitating a search

for more sustainable production practices. Zai technology has the ability to promote

soil moisture retention and enhances soil fertility. A four-seasons field experiment was

conducted to assess the impact of Zai technology combined with cattle manure and

inorganic fertilizer on selected soil properties and sorghum yields in Kabati, Kitui County.

The experiment was set up in a Randomized Complete Block Design (RCBD) with

eight treatments replicated thrice with sorghum Gadam as the test crop. Soil sampling

was done at the beginning of the first season and at the end of the fourth season

at a dept of 0–15 cm across each plot for laboratory analyses. From the results, the

increase in electrical conductivity was significant at p < 0.05 in all the treatments after

four cropping seasons. Total organic carbon significantly increased in Zai with cattle

manure (p = 0.045), conventional with no input (p = 0.038) and conventional with

cattle manure (p = 0.045). Available phosphorous significantly (p < 0.05) increased in

treatments under Zai technology while total nitrogen significantly (p < 0.05) reduced

after the four cropping seasons. There was a significant (p< 0.05) interactive effect of the

tested factors on soil pH, electrical conductivity, total nitrogen, and available phosphorous

at the end of the experiment. Moreover, there was significant (p < 0.05) interactive

effects on grain yields (SR18 and SR19 seasons) and stover yields (SR18, LR19, and

SR19 seasons), with higher yields being recorded in treatments under Zai technology.

This study demonstrates the importance of Zai technology in increasing crop yield by

trapping water and enhancing its retention and infiltration into the soil for uptake by plants.

This study concluded that positive impacts on important soil properties and crop yield

could be realized when Zai technology is utilized alongside either sole inorganics or a

combination of organic and inorganic amendments and this could be used as a strategy

to improve crop production in eastern Kenya and other similar areas.

Keywords: Zai technology, sorghum, integrated nutrientmanagement, soil fertility, cattlemanure,mineral fertilizer,

total nitrogen
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INTRODUCTION

According to FAO (2010), rain-fed agriculture contributes to
about 60% of the world crop production. Despite this, low
nutrient, inadequate water supply in quality and quantity
(Hengsdijk and Langeveld, 2009; Nelly, 2010) and soil moisture
stress (Rockstrom and Karlberg, 2010) have been found to be
the major drawbacks that limit crop productivity and are major
restraints to agricultural development inmany areas of the world.
Water scarcity and the resultant food insecurity are of particular
concern in most tropical regions of the world, where many
countries are less developed (Nelly, 2010).

For most countries in Sub-Saharan Africa (SSA), rain-

fed agriculture is a significant sector of their economy with
close to 70% of the total population living in rural areas
and largely depending on small-scale subsistence agriculture
for their livelihood security (Rockstrom, 2000). In this region,

rain-fed agriculture, which is characterized by droughts in
most parts (Rockstrom and Karlberg, 2010), has threatened
the food demand projected by 2050 (Grafton et al., 2015).

With such projections, rain-fed agriculture is one of the most
vulnerable sectors to climate variability and change as reported
by (Intergovernmental Panel on Climate Change, 2007).

The uncertainty and risk for current farm-level production
associated with variability of rainfall amount and distribution
within and between the seasons have downplayed the likely
impact of innovations aimed at improving farm productivity
(Biazin et al., 2012). This is because the uncertainty discourages
the decision to invest in improved farming practices by the
farming communities and the wide range of stakeholders in
agriculture (Cooper and Coe, 2011). The uncertainty of rainfall
amounts and distribution and the high evapotranspirationmakes
crop production a risky enterprise in semi-arid areas, as a result of
agricultural drought and intra-seasonal dry spells (ISDS) leading
to reduced yield in rain-fed agriculture (Kahinda et al., 2007).

Despite this, it is imperative to recognize that the situations
in many African countries are manageable. The global crop
yield growth average of the major cereals in the world varies
between 0.9 and 1.6% per year and the increase rates have fallen
in the past two decades (Grafton et al., 2015). Rosegrant et al.
(2002) reported that grain (maize, millet, sorghum, and teff)
yields from rain-fed agriculture were ∼1.5 t ha−1 in developing
countries. There is need to produce more to sustainably meet the
food needs of the ever-growing human population. Thus, this
necessitates the need to develop new strategies for agricultural
production in sub-Saharan Africa. These situations suggest that
the challenges of limited yields in rain-fed farming systems in
SSA might be overcome with soil water conservation techniques
combined with fertility management technologies (Rockstrom
and Karlberg, 2010). These combinations generate systems that
further increase water efficiency and yields in smallholder farms
(Winterbottom et al., 2013).

Studies have shown that Kenya is one of the most vulnerable
countries to climate variability and changes due to its low
adaptive capacity and over-dependence on climate sensitive
sectors such as rain-fed agriculture (Kurukulasuriya et al., 2006;
Herrero et al., 2010; FAO, 2011). Like many other countries in

SSA, Kenya has had significant drought events with the 2004–
2006 one affecting food availability for 2.5 million people and
2008–2010 affecting 10 million people (Rarieya and Fortun,
2009). This can be attributed to low soil fertility and moisture
deficits inhibiting crop production in the arid and semi-arid areas
(Gichangi et al., 2006). Use of suitable water and soil management
technologies such as Zai pit (Evett and Tolk, 2009) increases
rainfall use efficiency and bridge intra-seasonal dry spells (Dile
et al., 2013).

Zai pit system is one of the successful interventions
that ensure reduction in runoff and evaporation, improved
precipitation capture, and improved agricultural productivity
(Evett and Tolk, 2009). Since most lands under cultivation are
characterized by compaction, reduced permeability, limited plant
root development, and inadequate aeration (Zougmoré et al.,
2014), pitting facilitates more water infiltration as runoff water
is harvested due to the earthen bund formed downslope of the
pits (Kabore and Reij, 2004). Despite this, Zai pits have been
found to be efficient when combined with other soil moisture
conservation methods and organic and inorganic soil inputs
(Burpee et al., 2015).

The improvement of water status in the soil and the increased
decomposition and nutrient release results in a beneficial impact
of the Zai systems on crop performance under semi-arid
conditions (Zougmoré et al., 2014). Zai pit is a form of ancient
dryland farming technique that was first initiated in Burkina
Faso although some literature points it to Dogon in Northern
Mali (Danjuma andMohammed, 2015). It involves the utilization
of basins or holes of 20–120 cm and about 10–60 cm in depth
for agricultural activities (Sawadogo, 2011). Their utilization has
been found to minimize the effects of droughts since they ensure
soil maintenance, soil erosion control and water preservation
(Figure 2). Zai have been found to be capable of collecting up
to 25% or more of a run-off coming from 5 times its area
(Malesu et al., 2006). Zai pits are known to allow crops do well
in areas with high risk of crop failure as a result of harsh climatic
conditions (Critchley and Gowing, 2012). Water stored in the
Zai delay the onset and occurrence of severe water stress thereby
buffering the crop against damage caused by water deficits during
dry periods (Nyamadzawo et al., 2013). Zai pits increase the
amount of water stored in the soil profile by trapping or holding
rainwater where it falls (Mutunga, 2001). Besides enhancing
water storage, Zai pits increases water infiltration and reduces
run-off for plant uptake during the dry periods (Drechsel et al.,
2005). The pits play a key water harvesting role.

The application of soil fertility management inputs enhances
soil nutrient availability and improves nutrient uptake by crops
from soil reserves (Kar et al., 2013). Positive impacts of Zai
pit combined with integrated soil fertility management (ISFM)
inputs on agricultural productions of different crops have been
recorded in other studies (Kabore and Reij, 2004; Sawadogo,
2011). Zai pits combined with cattle manure has been known
to promote soil fertility (Fatondji et al., 2006; Sawadogo, 2011)
and increase organic matter content (Barry et al., 2009) in soil as
compared to use ofmineral fertilizer. Other studies have recorded
increased yields in maize (Recha et al., 2014), pearl millet grain
(Fatondji, 2002), and sorghum (Sawadogo, 2011).
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Besides supplying macronutrients and micronutrients to the
soil (Negassa et al., 2001; Tirol-Padre et al., 2007) cattle manure
has been found to improve the physical and chemical properties
of soil (Tirol-Padre et al., 2007). Cattle manure application
increases soil (Mucheru-Muna et al., 2007, 2014; Mugwe et al.,
2009; Mutegi et al., 2012; Wildemeersch et al., 2015), electrical
conductivity (Cai et al., 2014; Zhao et al., 2014; Ozlu and Kumar,
2018; Zhu et al., 2018) and Soil organic matter concentration
(Bayu et al., 2005; Mucheru-Muna et al., 2007; Xin et al., 2016;
Zhou et al., 2016; Omenda et al., 2021) as compared to inorganic
fertilizer. Cattle manure has been known to provide higher
Phosphorous levels to soil as compared to other organic inputs
(Mucheru-Muna et al., 2007; Tirol-Padre et al., 2007; Opala et al.,
2012;Muui et al., 2013). By raising soil organicmatter, it increases
cation exchange capacity and improves soil physical properties
(Bationo et al., 2006). The use of cattlemanure generally increases
sorghum yields (Gateri et al., 2011), wheat grain and straw yield
(Coventry et al., 2011), and maize yields (Omenda et al., 2021)
by providing plant nutrients and increasing the soil’s capacity
to hold those nutrients. Increased yields due to use of animal
manure has also been reported in other studies in central Kenya
(Lekasi et al., 2003; Kimani et al., 2004).

Most farmers in eastern Kenya are entirely depended on
rain-fed agriculture as a source of livelihood sustenance and

to meet their daily food demands. The study area, which is
located in eastern Kenya, is characterized by low, erratic and
unreliable rainfall, high temperatures and thus high evaporation
rates. These, coupled with low soil fertility has resulted to
low, insufficient crop yields among farmers thus resulting
to food insecurity. This necessitates the need of research
aimed at improving crop production for food security in the
area. The present study therefore sought to investigate how
selected soil parameters (Soil pH, Electrical conductivity, Total
nitrogen, Total organic carbon and Available phosphorous) and
sorghum yields are affected by the use of Zai pit technology
combined with integrated nutrient management amendments
(cattle manure and mineral fertilizer) in Kabati, Kitui
County, Kenya.

MATERIALS AND METHODS

Profile of the Study Area
The study was carried out in Kabati area, located in Kitui
County, Kenya (Figure 1). Based on the stratification of the agro-
ecological zones, Kabati represents the semi-arid areas of Kitui
County. It lies between 400m and 1,830m above sea level and
generally slopes eastwards with the highest regions being Mutitu
Hills and Kitui Central (KCIDP, 2018). The County lies between

FIGURE 1 | Location of Kabati, in Kitui County, Kenya (Source; author generated).
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latitudes 0010′ and 300′ South and longitudes 37,050′ and 3,900′

East (Figure 1).
The region has a bimodal rainfall distribution in a year,

the long rains (LR) which are experienced between March and
May and the short rains (SR) between October and December.
The total annual rainfall average is between 500 and 1,150mm
with a mean annual temperature of 24◦C (Jaetzold et al., 2006).
February and September are the hottest months of the year with
temperatures ranging to a maximum of 26–34◦C as compared to
temperature ranges of 14–22◦C experienced in the other months.
Agriculture, both livestock keeping and crop farming, is the
backbone of people’s economy in the area and a major source
of most households’ income (Republic of Kenya, 2005; KCIDP,
2018).

Various food crops [maize (Zea mays L.), beans (Phaseolus
vulgaris), green gram (Vigna radiata), cassava (Manihot
esculenta), sorghum (Sorghum bicolor), millet (Pennisetum
glaucum), and pigeon peas (Cajanus cajan)], fruits [mangoes
(Mangifera indica), water melons (Citrullus lanatus), oranges
(Citrus sinensis), lemons (Citrus limon), bananas (Musa
acuminata), and pawpaw (Carica papaya)], and vegetables [kales
(Brassica oleracea), tomatoes (Solanum lycopersicum), spinach
(Spinacia oleracea), and onions (Allium cepa)] are grown for local
consumption with the surplus being sold to traders (Republic of
Kenya, 2005; NDMA, 2017; KCIDP, 2018). The major soil type in
the study area is lixisols (red soils; Jaetzold et al., 2006). The soils
are predominantly sandy to loamy sand in texture; hence they
are generally poorly drained, susceptible to erosion by runoff and
are limited in their capacity to retain water and nutrients.

Experimental Design
The field experiments were laid out in a randomized Compete
block design (RCBD). Each experimental plot measured 6m by
4.5m with a 1m wide alley separating plots within a block and
2m wide alley left between blocks. The field experiment ran
for four consecutive cropping seasons; short rains 2018 (SR18)
and 2019 (SR19) and long rains 2019 (LR19) and 2020 (LR20).
There was a total of eight treatments (Table 1). The treatments
comprised of two systems, either Zai pit or convention system
(no Zai pits), both with four levels of fertilization (no input -
control), sole cattle manure, sole mineral fertilizer and both cattle
manure and mineral fertilizer). The Zai pits measured 60 cm by
60 cm with a 30 cm depth and was spaced at 70 and 75 cm inter
and intra-row, respectively (Figure 2). Dryland Sorghum Gadam
variety was used as the experimental test crop with three seeds
planted per hill, at a spacing of 75 and 20 cm inter and intra-
row, respectively and later thinned out to two seedlings per hill
two weeks after emergence to achieve the recommended plant
density per ha−1. External nutrient amendments were applied,
based on the Phosphorous and Nitrogen contents as determined
through a lab analysis of soil samples, at the beginning of every
season to give an equivalent amount of 60 kg N ha−1 and 60 kg P
ha−1, the recommended Nitrogen and Phosphorous rates in the
study area (FURP, 1994; Karanja et al., 2014). Cattle manure was
broadcasted before plowing for conventional plots and placed in
the prepared pits for Zai plots where it was thoroughly mixed
with soil. Mineral fertilizers were pre-weighed for each plot

TABLE 1 | Experimental treatments during the short rains 2018, long rains 2019,

short rains 2019, and long rains 2020 seasons in Kabati, Kitui County.

Technique ISFM input N and P

from mineral

fertilizer

(Kg ha−1)

N and P

from manure

(Kg ha−1)

Zai pits Sole Cattle Manure 0 60

Zai pits Sole Mineral fertilizer 60 0

Zai pits Cattle Manure + Mineral Fertilizer 30 30

Zai pits No inputs 0 0

Conventional Sole Cattle Manure 0 60

Conventional Sole Mineral fertilizer 60 0

Conventional Cattle Manure + Mineral Fertilizer 30 30

Conventional No inputs 0 0

FIGURE 2 | A photo showing the Zai pit technology.

before going to the field and applied using dollop cups to ensure
uniform distribution within the plot. Weeding was done twice
using hand hoe weeding.

Data Collection
Soil Sampling and Laboratory Analysis
The initial sampling was done beginning of SR18 season while
the final sampling was done end of LR20 season. Soil samples
were collected using an alderman auger at soil depth of 0–15 cm.
Soil auguring was done at five spots following a W pattern across
each plot and thoroughly mixed to make a composite sample
for each plot. Before sampling at every subsequent plot, the soil
auger and the collection buckets were thoroughly cleaned to
avoid sample contamination. A representative sample was taken
from each plot’s composite sample, packed in bags with marked
tags indicating the plot number and transported to the laboratory
for analyses. The fresh-field moist soils were then air-dried,
grounded and sieved before subjecting them chemical analysis
in the laboratory. All the laboratory analyses on the chemical
properties of the soil were done using the standard methods
for analyzing soils by Motsara (2008). Soil pH was determined
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FIGURE 3 | Rainfall distribution from 2018 to 2020 for short rains 2018, long rains 2019, short rains 2019, and long rains 2020 seasons.

at a 1:1 soil/water ratio using an electronic pH while electrical
conductivity was measured using an electrical conductivity
probe. Total nitrogen was determined using Kjeldahl method
as recently used by Bolo et al. (2021), Soil organic carbon was
determined using the Walkley and Black (1934) wet oxidation
method and available phosphorus was determined using the Bray
and Kurtz (1945) P-1 soil test phosphorus (P) method.

Harvesting and Yield Determination
Sorghum grain yield and stover yield were harvested at
physiological maturity from the net plot. The heads were
manually separated from the stover. All heads from each plot
were collected and separately placed in different sacks which
were well-labeled. Heads were then sun-dried, hand-threshed
and weighed at 12.5 % moisture content. Maize stover was cut
at ground level and total above-ground fresh weight determined.
Both grain and Stover yields were then converted from kilograms
per net area to tons per hectare (t/ha).

Statistical Analysis
Both sorghum yield and soil data were subjected to a two-way
analysis of variance (ANOVA) in R-studio program to obtain
an F-value of the effect of the model. Pair-wise comparison of
selected soil parameters differences between the start and the
end of the experiment were analyzed using t-test. Differences
between treatment means were examined using least significance
difference (LSD) at p= 0.05.

RESULTS

Rainfall Distribution During the Four
Experimental Seasons
There was seasonal rainfall variability over the four seasons of the
study (Figure 3). The four consecutive cropping seasons SR18,

TABLE 2 | Seasonal Rainfall characteristics for short rains 2018 and 2019 and

long rains 2019 and 2020.

Seasons

Parameter SR18 LR19 SR19 LR20

Start date 17/11/2018 26/4/2019 16/10/2019 5/4/2020

Stop date 3/3/2019 19/5/2019 2/2/2020 1/5/2020

Length of rainfall season 31 10 47 11

Total rainfall received 442.7 116.3 938.1 228

5–10 days 0 23.8 222.6 15

11–15 days 47.5 3.8 27.8 1

Above 15 days 395.2 59.1 670.3 212

Dry spell seasons 43 73 14 69

SR18, short rains 2018; LR19, long rains 2019; SR19, short rains 2019; LR20, long

rains 2020.

LR19, SR19, and LR20 were characterized by different rainfall
patterns, with higher rainfall occurring in the short rain seasons
(SR18-938.1mm and SR19- 442.71mm) compared to the long
rainy seasons (LR19-116.3mm and LR20- 228 mm).

The total number of rainy days varied in the four growing
seasons with SR19 having the highest number of rainy days (47
days) followed by SR18 (31 days) (Table 2). LR19 and LR20 had
the lowest number of rainy days i.e., 10 and 11 days, respectively.
Much of the rainfall during the SR18 and SR19 seasons was
received during the first 2 months with a prolonged dry spell
period occurring from day 64 after planting and prolonging
toward the end of the planting seasons.

In Contrast, the long rains seasons (LR19 and LR20)
experienced interchanging periods of rainy days and consecutive
dry days during the 1st month. An intra-seasonal dry spell of
73 and 69 days was experienced during the LR19 and LR20
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respectively, whereas during the SR18 and SR19 drought periods
of 43 and 14 days respectively, were experienced (Table 2).
The rainfall in Eastern Kenya is distributed within two seasons
annually, the long rains which are experienced between March
and May and the short rains between October and December.
Much of the total annual rainfall is received during the short
rains season and thus the short rains are consideredmore reliable.
It is during this season that higher crop yields are realized as
compared to the long rains season. In this study, highest total
season rainfall amounts were experienced during the short rains
and this had a positive impact on sorghum yield as compared to
the long rains’ seasons.

Effects of Zai Pits in Combination With
Selected ISFM Options on Selected Soil
Chemical Properties
Generally, there was observed variation in pH levels across
the treatments with all treatments that had manure application
whether solely or in combination with mineral fertilizer
increasing while those with sole application of mineral fertilizer
decreasing at the end of the experiment. There was a significant
(p < 0.05)interactive effect on soil pH at the end of the
experiment. The increase in soil pH was significant at p < 0.05
in Zai with manure (p = 0.02234), conventional with manure
(p= 0.04697), Zai pit with manure and half rate mineral fertilizer
(p = 0.02597), and conventional with manure and half rate
mineral fertilizer (p= 0.04697).

Electrical conductivity significantly increased at p< 0.05 in all
the treatments at the end of the experiment (Table 3); Zai pit with
no input (p= 0.015),Zai pit withmanure (p= 0.022),Zai pit with
full rate fertilizer (p= 0.0058), Zai pit with both manure and half
rate mineral fertilizer (p = 0.013), conventional with no input
(p= 0.001), conventional with manure (p= 0.006), conventional
with full rate mineral fertilizer (p= 0.019), and conventional with
both manure and half rate mineral fertilizer (p= 0.001).

All the treatment under Zai pit system had a significant
(p < 0.05) positive effect on electrical conductivity of soil as
compared to their counterparts under conventional system. Zai
with full rate mineral fertilizer and Zai with cattle manure and
half rate mineral fertilizer treatments significantly (p = 0.021)
increased electrical conductivity as compared to conventional
with full rate mineral fertilizer and conventional with cattle
manure and half rate mineral fertilizer. Zai with no input and
Zai with sole cattle manure recorded 27 and 6% higher electrical
conductivity values compared to Conventional with no input and
Conventional with sole cattle manure, respectivelyAt the end of
the experiment, total nitrogen significantly decreased (Table 3)
at p < 0.05 in Zai pit with no input (p = 0.0003), Zai pit
with sole cattle manure (p = 0.012), Zai pit with manure and
half rate mineral fertilizer (p = 0.047), Conventional with sole
cattle manure (p = 0.027), conventional with full rate mineral
fertilizer (p = 0.0005) and conventional with cattle manure
and half rate mineral fertilizer (p = 0.018). Zai with no input
significantly (p = 0.014) increased total nitrogen as compared to
conventional with no input treatment. Conventional with cattle
manure and half rate fertilizer had a significant positive effect

on total nitrogen than Zai with cattle manure and half rate
mineral fertilizer.

Significant (p < 0.05) increases in Total organic carbon
between the beginning and end of the experiment were recorded
under Zai pit with sole cattle manure treatment (p = 0.045),
conventional with sole cattle manure treatment (p = 0.045) and
conventional with no input treatment (p= 0.038). Under the Zai
pit system, Zai with sole cattle manure increased Total organic
carbon by 36, 22, and 19% higher as compared toZaiwith full rate
mineral fertilizer, Zai with no input and Zai with cattle manure
and half rate mineral fertilizer respectively (Table 3).

The amount of available phosphorous significantly (p < 0.05)
increased at the end of the long rains 2020 season in Zai with
sole cattle manure (p= 0.022), Zaiwith full rate mineral fertilizer
(p = 0.013), Zai with cattle manure and half rate mineral
fertilizer (0.021), and conventional treatment with cattle manure
and half rate mineral fertilizer (p = 0.039). At the end of the
experiment, Zaiwith full ratemineral fertilizer and Zaiwith cattle
manure and half rate mineral fertilizer treatments significantly
(p= 0.018) increased phosphorous as compared to Conventional
with full rate mineral fertilizer and Conventional with cattle
manure and half rate mineral fertilizer. Zai with no input and
Zai with sole cattle manure recorded 3 and 8% higher available
phosphorous amounts compared to Conventional with no input
and Conventional with sole cattle manure, respectively (Table 3).

Effects of Zai Pits in Combination With
Selected ISFM Options on Sorghum Yields
Generally, higher grain and stover yields were recorded during
the short rains’ seasons (SR18 and SR19) as compared to the
long rains’ seasons (LR19 and LR20) (Table 4). Even though
treatments under Zai system recorded higher grain yields in LR19
and LR20, the difference was not significant at P= 0.05 (Table 4).
Zai treatments recorded significantly (p < 0.05) higher grain
yields during the SR18, SR19 and LR19 seasons as compared
to the treatments under the conventional system. In SR18, Zai
with no input, Zai with sole cattle manure, Zai with full rate
mineral fertilizer and Zaiwith cattlemanure and half ratemineral
fertilizer recorded 33, 25, 42, and 28% significantly higher grain
yield than conventional with no input, conventional with sole
cattle manure, conventional with full rate mineral fertilizer and
conventional with cattle manure and half rate mineral fertilizer,
respectively (Figure 5).

The highest grain yields (4.85 t ha−1 in SR19 and was recorded
under the Zai pit system with cattle manure and half rate
mineral fertilizer and this was significantly (p < 0.05) higher
than the similar treatment under conventional system (Table 4).
During the SR19 season, Zai pit with cattle manure and half
rate mineral fertilizer, Zai with sole cattle manure, Zai with full
rate mineral fertilizer and Zai with no input recorded 48, 58,
39, and 40% significantly (p < 0.05) higher yields than their
counterpart treatments under conventional system (Figure 4).
The interaction effect on Sorghum grain yield between water
management and nutrient amendment options was significant at
p = 0.05 in SR18 and SR19 (Figure 5). In the LR19 and LR20
seasons, all the treatments under Zai system recorded higher
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TABLE 3 | Soil chemical properties (0–15 cm) at the beginning of short rains 2018 and end of long rain 2020 seasons at Kabati, Kitui County.

Soil parameters Electrical conductivity (EC) Total nitrogen (%) Total organic carbon (%) Available phosphorus (ppm)

Treatments Beg End t-test Beg End t-test Beg End t-test Beg End t-test

ZNO 249.8a 394.7a 5.38* 0.33a 0.19abc 14.13* 1.33a 1.57a −1.03 12.8a 20.4 c
−2.05

CNO 183.8b 298.4d 10.76* 0.31a 0.16cd 3.44 1.07a 1.65ab −3.07* 8.84a 19.78c −2.27

ZM60 209.9ab 383.4ab 4.45* 0.38a 0.18abcd 6.27* 1.12a 1.91ab −4.49* 11.02a 27.7bc −3.69*

CM60 194.1ab 360.1bc 8.84* 0.31a 0.19ab 4.99* 1.35a 1.69ab −3.16* 7.10a 25.59bc −2.49

ZF60 210.7ab 366.8bc 6.23* 0.46a 0.16cd 2.74 1.37a 1.51ab −0.56 10.2a 66.97a −6.97*

CF60 192.3ab 343.8c 9.60* 0.39a 0.15d 10.78* 1.28a 1.55ab −1.06 6.37a 16.01c −4.35

ZM30F30 200.2ab 360.5c 8.59* 0.38a 0.17bcd 4.13* 1.36a 1.60ab −1.32 8.74a 53.31ab −1.86*

CM30F30 234.8ab 388.0a 9.15* 0.38a 0.21a 5.31* 1.44a 2.22b −1.52 15.3a 27.7bc −4.32*

LSD 62.28 30.91 0.16 0.03528 31.95 31.95

P-value 0.28 0.02127* 0.47 0.01423* 0.59 0.24 0.1047 0.0179*

Means with same superscript letters in the same column denote no significant difference between treatments at p = 0.05.

*Significant at p < 0.05 between SR18 and LR20 seasons.

Beg, Beginning of experiment SR18; End, End of experiment LR20; LSD, Least significant differences betweenmeans; ZNO, Zai with no inputs; ZM60, Zai+Manure; CM60, Conventional

+ Manure; CNO, Conventional with no inputs; ZF60, Zai+ 60 kg N ha−1; CF60, Conventional+ 60 kg N ha−1; ZM30F30, Zai+ Cattle manure+ 30 kg N ha−1; CM30F30, Conventional

+ Cattle Manure + 30 kg N ha−1.

TABLE 4 | Interaction effects of Zai technology and selected nutrient amendment options on Soil pH and sorghum grain and stover yields in the short rains’ seasons of

2018 and 2019 (SR18 and SR19) and the long rain season of 2019 (LR19).

Treatments Soil pH

(end of experiment)

Sorghum grain yield Sorghum stover yield

SR18 SR19 SR18 SR19 LR19

ZNO 5.45bc 3.06bc 3.27b 6.74bc 15.18ab 1.97bc

CNO 5.55bb 2.86c 2.32c 6.75bc 10.02b 1.29c

ZM60 5.89a 3.86b 4.37a 10.37a 17.56ab 2.98ab

CM60 5.88a 2.88c 2.76c 7.34b 10.74b 1.49bc

ZF60 5.25c 4.38a 4.68a 7.81b 19.05ab 3.62a

CF60 5.32c 2.54c 3.15b 6.35bc 13.72b 2.18abc

ZM30F30 5.82a 4.37a 4.85a 12.71a 24.98a 2.33abc

CM30F30 5.78ab 3.13bc 3.27b 5.95c 13.07b 1.85bc

LSD 0.42 2.16 0.9954 9.248 10.09 1.628

P-value 0.01282 0.0009524 2.685e-05 0.0075471 3.54e-05 0.0006983

Means with different superscript letters in the same column denote significant difference at p = 0.05.

LSD, Least significant differences between means; ZNO, Zai with no inputs; ZM60, Zai +Manure; CM60, Conventional +Manure; CNO, Conventional with no inputs; ZF60, Zai+ 60 kg

N ha−1; CF60, Conventional+ 60 kg N ha−1; ZM30F30, Zai+ Cattle manure+ 30 kg N ha−1; CM30F30, Conventional + Cattle Manure + 30 kg N ha−1.

grain yield than their conventional counterpart treatments, with
the highest (1.39 t ha−1) grain yield recorded under Zai with
sole cattle manure in LR20 being 21% higher than that of
conventional with sole cattle manure (Table 4).

Highest stover yields were recorded during the SR19 season
while the lowest was recorded in the LR19 season. Significant
(p < 0.05) positive interaction effects on stover yields were
recorded in treatments under Zai system in the SR18, LR19, and
SR19 seasons as compared to the treatments under conventional
system (Figure 6). In SR18, Zai with cattle manure and half rate
mineral fertilizer recorded 53% significantly (p < 0.05) higher
stover yields than conventional with cattle manure and half
rate mineral fertilizer. During the LR19 season, Zai with no
input, Zai with sole cattle manure, Zai with full rate mineral
fertilizer and Zai with cattle manure and half rate mineral

fertilizer recorded 35, 50, 40, and 21% significantly (p < 0.05)
higher stover yields than their conventional counterparts. In
SR19 season, significantly (p < 0.05) higher stover yields were
recorded under Zai treatments as compared to similar treatments
under conventional system, with the highest (13.14 t ha−1) under
Zai with cattle manure and half rate mineral fertilizer being 35%
higher than the similar treatment under conventional system
(Figure 6).

Generally, across all the treatments in both systems in the
four study seasons, treatments with fertility inputs recorded
higher sorghum grain and stover yields as compared to both
Zai and conventional with no input. Furthermore, treatments
with cattle manure application either solely or in combination
with mineral fertilizer recorded significantly (p < 0.05) higher
yields as compared to the treatments with sole mineral fertilizer
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FIGURE 4 | Interaction effect of Zai technology and selected soil nutrient

amendment options on Soil pH at the end of the LR20 season. Beg, Beginning

of experiment SR18; End, End of experiment LR20; ZNO, Zai with no inputs;

ZM60, Zai + Manure; CM60, Conventional + Manure; CNO, Conventional with

no inputs; ZF60, Zai + 60 kg N ha−1; CF60, Conventional + 60 kg N ha−1;

ZMF30, Zai + Cattle manure + 30 kg N ha−1; CMF30, Conventional + Cattle

manure + 30 kg N ha−1. The error bar denote the least significant difference

(lsd) per season at p = 0.05. Means followed by same letters in the same

column denote no significant difference between treatments at p = 0.05.

application in both systems. All the treatments with sole
cattle manure application or with combined manure and
mineral fertilizer application recorded significantly higher yields
as compared to Zai pit treatments without cattle manure
application. The effect of interaction on Sorghum grain yield
between the selected water management strategy and the nutrient
amendment options was significant in the SR18 and the SR19.
The two seasons recorded highest grain yield with Zai treatments
recording higher yields than the treatments under conventional
system (Figure 5).

DISCUSSION

Generally, there was observed variation in pH levels across
the treatments with all treatments that had manure application
whether solely or in combination with mineral fertilizer
increasing while those with sole application of mineral fertilizer
decreasing at the end of the experiment (Figure 4).

The decrease in soil pH in mineral fertilizer-amended
treatments could be as a result of the H+ ions, which are
added on the cation exchange complex of soils from the mineral
fertilizer. Nitrogen fertilization acidifies the soil by the oxidation
of dry-deposited compounds, loss of basic cations through ion
exchange, and plant uptake and nitrification of ammonium (Cai
et al., 2019). Synthetic nitrogen application significantly reduces
exchangeable base cations in soils, which lead to declined soil pH.
A decline in base saturation is symptomatic of soil acidification
(Stevens et al., 2009). Additionally, synthetic nitrogen application
shifts soils into the Al3+ buffering stage. Aluminum is released
into solution at a pH below 5 by the hydrolysis of both Al-
hydroxides and silicates on claymineral surfaces (Cai et al., 2019).
Decrease in soil pH increases the availability of potentially toxic
heavymetals and also contribute to the reduction of themicrobial

organisms beneficial in root functions (Stevens et al., 2009). The
increase in soil pH in manure-amended soils could be attributed
to the reduction of exchangeable aluminum in acidic soils
(pH 4.5–5.5) which is considered to occur through aluminum
precipitation or chelation on organic colloids (Hue and Amien,
1989; Mucheru-Muna et al., 2007) or by complexation of soluble
aluminum by organic molecules, especially organic acids (Hue
and Amien, 1989). Generally, the ash-alkalinity nature of manure
is associated with protons to neutralize soil acidity (Rukshana
et al., 2013). The alkalinity of organic materials following the
decarboxylation of organic anions and the ammonification of
organic N (Cai et al., 2019) are the major causes of the recorded
increase in soil pH in manure-amended soils.

The observed pH decreases in fertilizer amended soils
corroborate with the findings by Cai et al. (2019) where lowered
soil pH was recorded in treatments with sole application of N
fertilizers which resulted in no yield after 12 years of study.
Accordingly, other studies reported that synthetic fertilizer
application could significantly decrease soil pH (Mucheru-Muna
et al., 2007; Cai et al., 2014; Zhu et al., 2018). The increase in
soil pH recorded in manure-amended soils correspond with the
findings by Wildemeersch et al. (2015) where increment in soil
pH to 5.0 from the initial 4.2 was recorded following manure
application. A number of other studies have also reported
significant increases in pHwithmanure treatment (Eghball, 2002;
Bayu et al., 2005; Mucheru-Muna et al., 2007, 2014; Mugwe et al.,
2009; Mutegi et al., 2012).

Higher increases in electrical conductivity recorded inmanure
amended soils (Table 3) could be as a result of presence of
dissolved salts in the cattle manure used as a result of feed
additives which when mixed with water, they dissolve and break
into tiny electrically charged ions, hence increasing the ability
of the soil solution to conduct electricity. The increase could
also be attributed to the resultant increases in exchangeable
potassium ions and organic matter, which supplies a pool of
nutrients and ions that can be released in the soil solution. This
observation corresponds with the findings by Ozlu and Kumar
(2018) who reported increased Electrical conductivity by 2.2
times in manure-amended soils as compared to that of fertilizer
for 0–10 cm depth. The higher increase in electrical conductivity
in the treatments with manure application as compared to non-
manure amendments is consistent with the findings of several
other studies (Dong et al., 2001; Eghball, 2002; Eigenberg et al.,
2002; Cai et al., 2014; Zhao et al., 2014; Carmo et al., 2016; Miller
et al., 2017; Zhu et al., 2018).

Generally, there was reduction in Total Nitrogen in all
the treatments at the end of the experiment (Table 3). The
observed decrease in total nitrogen content could be attributed to
uptake for utilization by sorghum plants. The recorded nitrogen
losses could also as a result of erosion by run off since the
experiments were carried out during rainy seasons and the soils
in the study area, being predominantly sandy to loamy sand in
texture, are poorly drained, susceptible to erosion and are limited
in their capacity to retain water and nutrients. Furthermore,
the reduction recorded in manure-amended treatments could
be as a result of increased microbial biomass which could
utilize the nitrogen and losses through leaching, denitrification
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FIGURE 5 | Effect of interaction of Zai technology and selected nutrient options on Sorghum yields in the Short rains’ seasons 2018 and 2019 (SR18 and SR19). NO,

No inputs; M60, Sole manure; F60, Full rate mineral fertilizer (60 kg N ha−1); M30F30, Manure + half rate mineral fertilizer (30 kg N ha−1).

FIGURE 6 | Interaction effect of Zai technology and selected nutrient amendment options on Sorghum stover yield in the Short rains’ seasons, 2018 and 2019 (SR18

and SR19) and long rain season 2019 (LR19). NO, No inputs; M60, Sole manure; F60, Full rate mineral fertilizer (60 kg N ha−1); M30F30, Manure + half rate mineral

fertilizer (30 kg N ha−1).
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and ammonia volatilization. These results correspond with the
findings of other studies where reduction in total nitrogen were
recorded and the losses attributed to erosion (Jaetzold et al.,
2006), utilization through microbial activity (Van Diepeningen
et al., 2006) and losses through denitrification and ammonia
volatilization (Ju et al., 2009).

The recorded significant increases in total organic carbon in
treatments with sole application of manure (Table 3) could be
as a result of addition of more carbon source through manure
application. Manure directly increases carbon inputs into the soil
and also influences crop residues, which potentially sequestrates
agricultural soil organic carbon and nutrient release. These
finding is corroborated by the finding by Hati et al. (2007)
who attributed the observed increase in soil organic carbon
among different fertility treatments after 28 years of study to the
addition of carbon source through crop residues, root biomass,
and farmyard manure. Similarly, other studies have reported
a significant increase in soil organic carbon in treatments that
had sole cattle manure application (Dunjana et al., 2012; Bedada
et al., 2014) and in those with manure and half rate fertilizer
(Kaur et al., 2007; Bedada et al., 2014). Several other studies have
reported increases in organic carbon content in soil as a result
of manure application as compared to use of mineral fertilizer
(Mucheru-Muna et al., 2007; Lal, 2008; Bandyopadhyay et al.,
2010; Dunjana et al., 2012; Liang et al., 2012; Kuzyakov and
Blagodatskaya, 2015; Xin et al., 2016; Zhou et al., 2016).

There was increase in available phosphorous in all the
treatment at the end of the experiment (Table 3). The higher
levels of phosphorous recorded in treatments with sole fertilizer
or fertilizer combined with manure application was as a result of
phosphorous available in the NPK fertilizer used. Zai treatments
with either sole cattle manure application or manure combined
with mineral fertilizer had higher available phosphorous levels
at the end of the experiment as compared to similar treatments
under conventional system. This could be as a result of the
composition of cattle manure, which contains both organic and
inorganic phosphorous. Plants take up phosphorous in form of
inorganic orthophosphates and it generally constitutes 45–90%
of the phosphorous in manure (Buckley and Makorto, 2004),
making manure an important source of phosphorous. Despite
the effect of nutrient amendment inputs, all the treatments under
Zai system recorded higher phosphorous levels as compared to
conventional treatments. This could be due to the ability of the
Zai pit system to hold nutrients in place by preventing nutrient
loss through run-off by erosion. The current trend of results is
in consonance with the findings of studies by Mucheru-Muna
et al. (2007), Tirol-Padre et al. (2007), and Muui et al. (2013).
Cattle manure supplies macronutrients and micronutrients to
the soil (Gemechu, 2020) and has been known to provide higher
phosphorous levels to soil as compared to other organic inputs
(Opala et al., 2012).

Generally, the two short rains seasons (SR18 and SR19)
recorded higher grain and stover yields as compared to the
two long rains seasons (LR19 and LR20). This could be as a
result of the high rainfall amounts (442.71 and 938.1mm for
SR18 and SR19, respectively) recorded in the short rains seasons
(Figure 1) which were higher than those recorded in the long rain

seasons (166.3 and 228mm for LR19 and LR20, respectively).
The amount of rainfall received during the planting season
has an effect on yield. The number of rainy days were also
more during these two short seasons (Table 2) with more rainy
days occurring during the first 62 days after planting (critical
growth and developmental stages). According to Hansen (2004),
agricultural activities in eastern Kenya depends on the OND
(October, November, andDecember) short rainfall seasons which
have been found to be more predictable and reliable. Thus,
better annual yields are received during the OND seasons in
most agriculture-depended households (Amissah-Arthur et al.,
2002; Barron et al., 2003). The lower yields recorded during
the LR19 and the LR20 seasons was as a result of the lower
unreliable rainfall amounts, fewer number of rainy days and
poor distribution during the season (McCarl et al., 2008). These
two seasons experienced long intra-seasonal dry spells (73 and
69 days for LR19 and LR20, respectively) which resulted to soil
moisture stress, hence the low recorded yields. Intra-seasonal dry
spells are a characteristic feature of semi-arid areas in East Africa
(Barron et al., 2003) and South Africa (Usman and Reason, 2004).
The occurrence of these dry spells has had major detrimental
effects on crop yields. In their study, Craufurd and Peacock
(1993) found out that sorghum grain yields were reduced by
87% as a result of water stress which occurred during critical
crop developmental stages such as flowering and stem swelling
(McCarl et al., 2008). According to Bewket (2009) and Mulat
et al. (2004), the amount and temporal distribution of rainfall
is generally the major determinant of inter seasonal fluctuations
observed in crop production levels.

Zai pit is a form of ancient dryland farming technique which
involves the utilization of basins or holes for agricultural activities
so as to minimize the effects of droughts since they ensure
soil maintenance, soil erosion control and water preservation
(Sawadogo, 2011; Danjuma and Mohammed, 2015). In Kenya,
Zai pits technology has been promoted as a water harvesting
technique for maize production in eastern region (Recha et al.,
2014). The results of this study indicated that treatments under
Zai pit technology with the selected soil nutrient amendment
options had a significant (p< 0.05) interaction effect on sorghum
grain and stover yields as compared to similar treatments under
conventional system. Furthermore, higher yields were realized in
Zai treatments containing either sole cattle manure or manure
combined with mineral fertilizer.

Despite the fertility inputs, the higher yields recorded under
Zai treatments could be attributed to the potential of Zai pits
in increasing the amount of water stored in the soil profile by
trapping or holding rainwater where it falls (Mutunga, 2001),
therefore delaying the onset and occurrence of severe water stress
thus buffering the crop against damage caused by water deficits
during dry periods (Nyamadzawo et al., 2013). Besides enhancing
water storage, Zai pits increases water infiltration and reduces
run-off for plant uptake (Drechsel et al., 2005) thereby, boosting
crop yield. The results of this study correspond with other studies
whose results indicated a positive effect of Zai pit utilization on
crop yield.

Fatondji et al. (2006) found out that the use of Zai pits in
Burkina Faso led to increased harvests of pearl grain Millet.
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They attributed this increase to the use of Zai pits as well
as the use of organic fertility inputs. A study by Sawadogo
(2011) reported increased yields variations from 300 to 400 kg
ha−1 by the Zai system in degraded land. Sawadogo (2011)
reported substantial sorghum grain yield increases in farmer’s
fields from 319 to 642 kg ha−1 without Zai pit system to 975
to 1,600 kg ha−1 with Zai pit system. The use of potential of
Zai pit system in increasing crop yield has also been reported
in Zambia (Haggblade and Tembo, 2003; Thierfelder and Wall,
2009), South Africa (Magombeyi and Taigbenu, 2008), Niger
(Fatondji et al., 2009), Ethiopia (Amede et al., 2011), and in
Zimbabwe (Thierfelder and Wall, 2009; Gumbo et al., 2012).
Besides its positive effect on soil moisture, Zai pits have a good
potential to increase soil biological activities and to promote
nutrient use and agronomic efficiency (Fatondji, 2002).

CONCLUSION

Significant differences in soil properties and sorghum grain
and stover yields among different fertilization treatments
under Zai and conventional systems were recorded in this
study. Application of sole manure or combined with mineral
fertilizer significantly increased soil pH, electrical conductivity,
soil organic carbon and available phosphorous as compared
to treatments with sole mineral fertilizer at the end of
the experiment.

There was significant (p < 0.05) interaction effect of Zai
technology and the selected soil nutrient amendment options
on the selected soil properties and sorghum grain and stover
yields. Generally, treatments under Zai system recorded higher
pH, electrical conductivity, organic carbon, phosphorous, and
nitrogen levels as compared to conventional treatments and this
could be due to the ability of the Zai pit system to hold nutrients
in place by preventing nutrient loss through run-off by erosion.
The significant effects resulting from the interaction ofZai system
and the selected soil nutrient amendment options on sorghum
grain and stover yields as compared to the conventional system
could be attributed to moisture retention and increased nutrient
use efficiency enhanced by the Zai pits. The results of this study
demonstrates that significant positive interaction effects on crop
yields could be achieved when Zai technology is combined with
inorganic nutrient amendments either solely or in combination
with organic inputs. The ability of Zai technology to improve
crop yield is largely attributed to its pit design. Apart from

capturing water, Zai pits enhances soil moisture retention and
infiltration thereby increasing the amount of water in the soil that
is available for uptake by plants.
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